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Coherent structures in wave boundary layers.
Part 1. Oscillatory motion

STEFAN CARSTENSEN†, B. MUTLU SUMER‡
AND JØRGEN FREDSØE

Technical University of Denmark, DTU Mekanik, Section of Coastal, Maritime and Structural
Engineering, Building 403, 2800 Kgs. Lyngby, Denmark

(Received 19 September 2008; revised 16 October 2009; accepted 18 October 2009)

This work concerns oscillatory boundary layers over smooth beds. It comprises
combined visual and quantitative techniques including bed shear stress measurements.
The experiments were carried out in an oscillating water tunnel. The experiments
reveal two significant coherent flow structures: (i) Vortex tubes, essentially two-
dimensional vortices close to the bed extending across the width of the boundary-
layer flow, caused by an inflectional-point shear layer instability. The imprint of
these vortices in the bed shear stress is a series of small, insignificant kinks and
dips. (ii) Turbulent spots, isolated arrowhead-shaped areas close to the bed in an
otherwise laminar boundary layer where the flow ‘bursts’ with violent oscillations.
The emergence of the turbulent spots marks the onset of turbulence. Turbulent spots
cause single or multiple violent spikes in the bed shear stress signal, which has
profound implications for sediment transport (in both the laboratory and the field).
The experiments also show that similar coherent flow structures exist in the case of
combined oscillatory flow and current.

1. Introduction
In shallow waters, the orbital motion of water particles under a progressive wave

degenerates into a bottom-parallel, straight line, oscillatory motion at the seabed. For
each cycle of the oscillatory motion, a time-dependent boundary layer develops over
the bed, the wave boundary layer. In addition to applications in coastal engineering,
oscillatory boundary layers exist in several other fields such as biological flows and
turbomachinery. With the pioneering work of Lundgren & Jonsson (1961), wave
boundary layers have been the subject of much investigation in the past two decades
or so (see, for example, Hino, Sawamoto & Takasu 1976; Hino et al. 1983; Kemp &
Simons 1982, 1983; Sleath 1987; Jensen, Sumer & Fredsøe 1989; Lodahl, Sumer &
Fredsøe 1998; Dixen et al. (2008) on the experimental side and Grant & Madsen
1979; Fredsøe 1984; Justesen 1988; Vittori & Verzicco 1998; Costamagna, Vittori &
Blondeaux 2003; Lohmann et al. 2006; Salon, Armenio & Crise 2007; Fornarelli &
Vittori 2009 on the theoretical side). Major reviews on the subject have been presented
by Soulsby et al. (1993), Blondeaux & Vittori (1999) and Sumer (2003), and, although
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not to the extent of the latter three reviews, in several papers published in recent
years, Fredsøe et al. (2003), Salon et al. (2007), Dixen et al. (2008) and Fuhrman,
Fredsøe & Sumer (2009a, 2009b).

Of particular interest is the transition to turbulence. Turbulence first emerges in
the form of spikes in the wall shear stress signal (or in the near-wall velocity signal)
prior to the flow reversal near the wall (Hino et al. 1976; Jensen et al. 1989; Lodahl
et al. 1998). (These spikes can be seen in figure 14.) Kemp & Simons (1982) noted
high turbulence in the decelerating stage of the oscillatory motion. Similar behaviour
in the streamwise component of the velocity accompanied with violent fluctuations
in the cross-stream and spanwise velocities near the wall was observed in the direct
simulations of transition in oscillatory boundary layers (achieved by direct numerical
simulation, DNS) in the study of Vittori & Verzicco (1998). Their figure 6 is an
excellent demonstration of these features where what they call perturbations of the
Stokes flow start to appear towards the end of the accelerating phases of the cycle and
are sustained during part of the decelerating phases. They also note that the turbulent
velocity fluctuations increase in strength, and the decelerating part of the cycle during
which they are observed becomes longer. There is quite a substantial amount of
literature on the topic of transition to turbulence in oscillatory boundary-layer flows.
Akhavan, Kamm & Shapiro (1991a, 1991b), Blondeaux & Vittori (1994), Lodahl
et al. (1998), Vittori & Verzicco (1998), Costamagna et al. (2003), Blennerhassett &
Bassom (2006) and Tuzi & Blondeaux (2008) can be consulted for recent, as well as
earlier, theoretical and experimental work on the subject.

Jensen et al. (1989) and Lodahl et al. (1998) interpreted the transition to turbulence
in terms of the combined effect of two factors: (a) The adverse pressure gradient prior
to the flow reversal near the wall becomes relatively large; and (b) The near-wall
velocities become relatively small at this stage. These two effects combined presumably
lead to a favourable environment for the inception of turbulence. However, some
researchers (e.g. Foster, Holman & Beach 1994; Foster 1997) have suggested that
turbulence is caused by an inflectional-point shear layer instability, as the phase-
resolved velocity profiles immediately after the near-wall flow reversal develop
inflectional-point instabilities. The inflectional-point instability and the controversy
it caused was brought into focus already in 1991 by Akhavan et al. (1991b); these
authors pointed out that a quasi-steady instability analysis for an oscillatory Stokes
flow predicts the most unstable profiles to occur near the start of the acceleration
stage, and the most unstable eigenmodes have their peak energies around inflectional
points, emphasizing that these predictions do not agree with experimental observations
which show that the flow becomes explosively unstable during the deceleration stage,
and also that the predicted critical Reynolds number for the former type of the
instability, (Reδ)cr ∼ 85, is not in accord with (Reδ)cr ∼ 500, the critical Reynolds
number associated with the transition to turbulence (the explosive instability during
deceleration) observed in the experiments. Here, Reδ = δ1U0m/ν in which δ1 is the
Stokes length (10) and U0m the amplitude of the oscillatory free-stream velocity.
(Note that (Reδ)cr ∼ 500 corresponds to (Re)cr ∼ 1.25 × 105, in terms of the Reynolds
number adopted in this study; see (5).)

The questions that remain unsettled are: (a) What is the cause of the aforementioned
spikes observed in the wall shear stress (or in the near-wall streamwise velocity) in
transition to turbulence? (b) What are the parameters that govern the development of
the flow features that cause the spikes? (c) What is the role of the inflectional point
shear layer instability in the transition to turbulence in oscillatory boundary layers?
Is it really the cause of the inception of turbulence? Or is the inception of turbulence
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Figure 1. Oscillating water tunnel.

caused by something else? (d ) What is the influence of a current superimposed on
the oscillatory flow, the case of combined waves and current, an important flow
environment in coastal engineering?

This study essentially addresses these questions. The combined visual and
quantitative techniques reveal two significant features, which deserve early mention.
First, the previously mentioned inflectional-point shear layer instability leads to
generation of small vortex tubes near the wall extending across the width of the
boundary layer (in the transverse direction). Second, the spikes observed in the
wall-shear stress signal are caused by turbulent spots, the arrowhead-shaped flow
features known from steady boundary-layer research. The inception of turbulence
is shown to be associated with the emergence of the turbulent spots, similar to the
laminar-to-turbulence transition in steady boundary layers. (We note that ‘turbulence’
generated by the previously mentioned vortex tubes has a very limited lifespan, and
its magnitude is quite insignificant compared with that generated by the turbulent
spots for the same Reynolds number as detailed in the paper.)

2. Experimental facility
Two experiments were conducted: pure oscillatory flow experiments and combined

oscillatory flow and current experiments.

2.1. Pure oscillatory flow experiments

2.1.1. The oscillatory-flow water tunnel and instrumentation

The experiments were carried out in a U-shaped oscillatory-flow water tunnel
(figure 1). This tunnel is the same as that described by Jensen et al. (1989). The
working section was 10 m long, 0.29 m high and 0.39 m wide. The top and side
walls were made of smooth transparent perspex plates. The bottom wall was made of
smooth acrylic plates. The oscillatory flow in the tunnel was driven by an electronically
controlled pneumatic system. The period of the oscillations was maintained at 9.72 s,
the natural period of the oscillating water in the tunnel.
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Figure 2. Test setup. (a) Hot-film probe. (b) Dye tube.

Two measurements were made: bed shear stress measurements and free-stream
velocity measurements.

The bed shear stress was measured with a Dantec 55R46 hot-film probe, mounted
flush to the bottom wall in the middle of the measurement section (figure 2, symbol
(i)). The hot-film probe has a hot-film sensor, the key element of the probe, inserted
in a quartz rod housed in a 2.1 mm diameter chromium-plated brass cylinder element.
The dimensions of the hot-film sensor were (dx × dz) = (0.2 mm × 0.75 mm). In order
to ensure correct calibration, the hot-film probe was calibrated in situ where the
calibration coefficients A and B in the calibration relation

τ
1/3
0 = AE2 + B (1)

were determined in oscillatory laminar boundary-layer conditions for which the
theoretical solution for the wall shear stress is known (as done by Jensen et al. 1989).
Here E is the voltage drop. The temperature field in the water in the calibration tests
was practically the same as that in the actual experiments. (The water temperatures
are given in the captions of tables 1 and 2.) In this context, we note that a static
calibration is not necessarily the same as a dynamic one as the temperature field in
the substrate may change during a static calibration. This is especially true for hot
films measuring in air but may also be important in liquids.

For turbulent flows, (1) (with the coefficients A and B determined from laminar-flow
experiments) holds true provided that τ is the instantaneous value of the wall shear
stress and E the corresponding instantaneous voltage drop (Hanratty & Campbell
1983).

The free-stream velocity, which acted as a reference signal, was measured with a
one-component laser doppler anemometer (LDA), used in forward scatter mode. The
LDA was a Dantec LDA 04 system equipped with a 15 mW He–Ne laser, a Dantec
55N10 frequency shifter and a Dantec 55N20 frequency tracker. The measurement
point was located at the centre line, at the point (x, y, z) = (20 cm, 14.5 cm, 19.5 cm)
(figure 2). The measurement point was not exactly at the same section as the wall
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shear stress probe. This was to avoid the laser beams blocking the viewing areas of
the cameras used in the flow visualization (figure 2, Cameras A and B). The sampling
interval for the hot film and velocity measurements was 13.3 ms.

2.1.2. Flow visualization

Two types of flow visualizations were performed: plan-view flow visualization
(Camera A) and side-view flow visualization (Camera B). Because of the experimental
constraints, these tests were conducted not at the same time, but separately. A
Panasonic GP-KS162 industrial colour CCD digital micro camera was used in the
tests. The camera produces 25 frames per second; thus, with the given oscillatory-flow
period, T = 9.72 s, which yielded 243 frames per period (or an increment in phase
between consecutive frames of Δ(ωt) ≈ 1.5◦). This time resolution was small enough
to follow the time evolution of coherent, organized flow structures observed in the
present experiments.

Plan-view flow visualization. The thin-layered milk technique developed by
Hayashi & Ohashi (1982) was used in the tests. Skimmed milk diluted with water at
a ratio of 1:9 was coloured by adding a small amount of ordinary red food colour,
hereafter referred to as ‘dye’. The bottom of the tunnel was white. This made it
relatively easy to identify and interpret coherent structures made visible by the dye.
(The shadows of the lifted coherent structures, made visible by the dye, were quite
distinct against the white background.) The dye was injected through a small pipe
situated at the junction between the bottom and the sidewall (figure 2). Prior to
injection, the dye had been cooled to a temperature around 5◦C. At this temperature
the density of water is close to its maximum so that the dye remains in a thin layer
at the bottom (of a thickness of less than 1 mm). In order to avoid density gradients
due to temperature differences, the dye was, after injection, allowed to reach the
same temperature as the surrounding water before the experiment was conducted.
Furthermore, the density of the dye was kept close to that of water, and well below
the critical value for stable stratification to occur (Carstensen 2006). Illumination was
through the top wall of the measurement section of the tunnel.

In the tests, (a) the bed shear stress and free-stream velocity measurements,
and (b) the plan-view flow visualization were synchronized. The synchronization
was achieved by a light-emitting diode. The diode was set to flash at each zero
crossing of the free-stream velocity while simultaneously a synchronization signal
was sent to the data acquisition system which recorded the bed shear stress and the
free-stream velocity. As both the data acquisition system and the video recording
were operated at constant sampling frequencies, a linear relation between the frame
number of the flow visualization and the sample number of the data acquisition was
established to relate the video recording to the sampled velocity and bed shear-stress
signals.

In an exploratory test series conducted before the actual tests, it was evident that
the dye, introduced into the water in a thin layer at the bottom, which remained at
rest until the water was set in motion, lasted over a fairly long period of time under
laminar-flow conditions (as long as up to about ten cycles of the motion, O(100 s),
or more). This was not the case, however, for turbulent conditions where the dye
was dispersed extremely rapidly, within the first two or three cycles after transition
to turbulence had occurred. This limited the duration of some of the tests to the first
three or four cycles of the motion where the water was set into motion from rest,
with the amplitude being increased steadily throughout the test (figure 3a).
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Figure 3. (a) Free-stream velocity in the experiments except in test 2.
(b) Free-stream velocity in test 2.

The following procedure was adopted in the tests: (a) Release the dye when the
water is at rest; (b) Make sure that the bottom area where the dye spreads well
coincides with the viewing area of the camera; (c) Start the video recording and data
sampling shortly before the water is set into motion from rest; (d ) Videotape the flow,
and sample the bed shear stress and the free-stream velocity data as the amplitude of
the oscillatory motion is increased steadily as illustrated in figure 3(a), and continue
to do so until the dye is completely dispersed (dispersed so much so that the flow
visualization becomes practically impossible); and (e) Continue the data sampling
until the end of the test.

In one test (test 2), the amplitude was increased steadily for the first eleven half-
cycles (as in figure 3a), and then kept constant thereafter over the next five half-cycles
(the steady-oscillations portion of the motion in figure 3b). The amplitude of the
motion in this test was relatively small, and therefore the dye ‘survived’, enabling the
flow visualization for this latter part of the motion to be materialized.

Regarding the question how the present oscillatory flow (where the amplitude
increases steadily; figure 3a) compares with steady oscillatory flow (where the
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Figure 4. Traces of the bed shear stress and the free-stream velocity. Test 9.

amplitude remains constant), the friction factor and the phase lead of the bed shear
stress, two most important quantities to describe the oscillatory boundary-layer flow,
have been worked out, and compared with the classic steady oscillatory flow data in
the Appendix (figure 21). This shows that the two sets of data are in good agreement.
The Appendix gives a detailed discussion regarding this issue.

Figure 4 shows sample records (test 9, see table 1), the top time series representing
the free-stream velocity, U0, and the bottom time series the bed shear stress, τ0. (Note
that the hot-film bed shear stress probe does not sense the direction of the bed shear
stress and, therefore, the bed shear stress does not change sign as the free-stream flow
alternates between positive and negative directions.)

Side-view flow visualization. This was achieved, using fluorescent dye and a vertical
laser sheet, which was 1 mm in thickness. The laser sheet was placed so that the
area just above the flush mounted hot film was illuminated. (The fluorescent dye
was selected in favour of the coloured milk in these tests. This was because the milk
blocked the viewing area of the camera, Camera B, the area illuminated by the laser
sheet and, therefore, no clear visualization could be achieved.) The fluorescent dye was
cooled, injected and allowed time to gain the same temperature as the surrounding
water, in the same way as in the plan-view flow visualization tests. Similar to the
plan-view flow visualization measurements, the bed shear stress and free-stream
velocity measurements were synchronized with the flow visualization in these tests,
too.
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Half-cycles
videotaped and/

or measured Flow
(see figure 3 for a = visualization:

Test Total the definition U0mT/(2π) plan view
no. of runs sketch) U0m (cm s−1) (cm) Re = U0ma/ν or side view

(1) (2) (3) (4) (5) (6) (7)

(1) Flow visualization synchronized with bed shear stress and
free-stream velocity measurements

1 1 1–11 0.0–21.1 0.0–32.6 5.3 × 102–6.9 × 104 Plan view
2 2 1–16 0.6–33.0 0.9–51.0 1.1 × 102–1.7 × 105 Plan view
3 2 1–11 1.5–44.2 2.3–68.4 3.5 × 102–3.0 × 105 Plan view
4 2 1–9 2.3–49.8 3.5–77.0 7.8 × 102–3.9 × 105 Plan view
5 2 1–6 5.0–53.7 7.7–83.1 3.3 × 103–4.3 × 105 Plan view
6 2 1–5 8.7–70.8 13.5–109.5 1.1 × 104–7.5 × 105 Plan view
7 2 1–4 10.7–62.1 16.5–93.0 1.7 × 104–6.0 × 105 Plan view
8 1 1–4 14.8–75.2 22.9–116.3 3.4 × 104–8.7 × 105 Plan view
9 1 1–6 4.4–49.3 6.8–76.2 3.0 × 103–3.8 × 105 Side view

10 1 1–9 1.8–47.5 2.8–73.5 5.0 × 102–3.5 × 105 Side view

(2) Bed shear stress and free-stream velocity measurements
(Dye was diluted to the extent that no flow visualization was possible)

4 2 10–11 55.8–61.0 86.3–94.3 4.8 × 105–5.8 × 105 –
5 2 7–11 64.5–102.4 99.8–158.4 6.4 × 105–1.6 × 106 –
6 2 6–11 83.9–156.4 129.7–242.0 1.1 × 106–3.8 × 106 –
7 2 5–11 79.8–177.1 123.5–273.5 9.9 × 105–4.9 × 106 –

Table 1. Test conditions. Pure oscillatory flow. Period of the motion, T =9.72 s. Video
recording, bed shear stress and free-stream velocity measurements were synchronized. Water
temperature was 20◦C and the kinematic viscosity was 0.010 cm2 s−1.

Samples of flow visualizations, both in plan view and in side view, can be seen in
supplementary movies 1–4 at journals.cambridge.org/flm.

2.2. Combined oscillatory flow and current experiments

A constant head tank, the head being 6 m with respect to the mean water level in
the tunnel, provided the current. The desired flow rate was obtained by simultaneous
adjustments of the inlet and outlet valves of the tunnel. The current flow rate was
measured by a magnetic flowmeter installed on the supply pipe before the pipe enters
the tunnel (figure 1). (This setup to generate current in the tunnel was essentially the
same as that used by Lodahl et al. 1998.)

The following procedure was adopted in the tests. The dye for the flow visualization
was injected while the oscillatory component of the combined flow was nil, and the
current component was rather small (regulated by valves 1 and 3; figure 1). Once the
dye was injected, first the current component of the combined flow was adjusted to the
desired value of the flow rate, Q (see table 2), and then the oscillatory flow component
was added. The current was adjusted using valves 2 and 4. These two valves were
electronically controlled to open gradually at small increments. The gradual increase
was adopted in favour of sudden increase to avoid setting the water in the tunnel
into natural oscillations and to allow the steady boundary layer to develop before the
oscillatory component was added.

The sampling interval for the hot film and velocity measurements was 12.5 ms.
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Half-cycles
videotaped V =

Test and U0m a = U0mT/(2π) Q Q/(bh) Rec =
no. measured (cm s−1) (cm) Re = U0ma/ν (l s−1) (cm s−1) 4RhV/ν

(1) (2) (3) (4) (5) (6) (7) (8)

11 1–11 −32.9 −50.8 −1.7×105 1.56 1.4 4.5×103

12 1–11 0.9–42.3 1.4–65.3 1.3×102–2.7×105 1.57 1.4 4.6×103

13 1–9 1.7–47.9 2.6–74.0 4.5×102–3.5×105 1.58 1.4 4.6×103

14 1–6 3.7–50.8 5.7–78.4 2.1×103–3.9×105 1.59 1.4 4.6×103

15 1–5 6.9–68.4 10.7–105.6 7.4×103–7.2×105 1.59 1.4 4.6×103

16 1–4 8.4–56.4 13.0–87.1 1.1×104–4.9×105 1.60 1.4 4.6×103

17 1–11 −33.9 −52.4 −1.8×105 3.74 3.3 1.1×104

18 1–11 1.0–43.1 1.5–66.6 1.5×102–2.8×105 3.71 3.3 1.1×104

19 1–9 1.9–47.7 3.0–73.7 5.7×102–3.5×105 3.75 3.3 1.1×104

20 1–6 4.2–54.0 6.5–83.4 2.7×103–4.5×105 3.71 3.3 1.1×104

21 1–5 7.3–66.3 11.3–102.4 8.2×103–6.7×105 3.69 3.3 1.1×104

22 1–4 8.6–58.3 13.3–90.1 1.1×104–5.2×105 3.79 3.4 1.1×104

23 1–11 −21.0 −32.4 −6.7×104 5.98 5.3 1.7×104

24 1–11 −33.3 −51.4 −1.7×105 5.97 5.3 1.7×104

25 1–11 0.9–42.2 1.4–65.1 1.2×102–2.7×105 5.95 5.3 1.7×104

26 1–8 1.5–41.7 2.3–64.3 3.5×102–2.7×105 5.98 5.3 1.7×104

27 1–6 4.3–51.3 6.6–79.2 2.8×103–4.0×105 5.94 5.3 1.7×104

28 1–4 6.9–50.5 10.6–77.9 7.2×103–3.9×105 5.91 5.2 1.7×104

29 1–4 9.5–57.7 14.7–89.1 1.4×104–5.1×105 6.01 5.3 1.8×104

30 1–11 −22.2 −34.3 −7.2×104 7.95 7.0 2.2×104

31 1–11 −35.8 −55.3 −1.9×105 8.09 7.2 2.2×104

32 1–11 0.9–44.9 1.4–69.3 1.3×102–2.9×105 8.00 7.1 2.2×104

33 1–9 1.8–48.7 2.8–75.3 4.8×102–3.5×105 8.00 7.1 2.2×104

34 1–6 3.7–54.1 5.8–83.6 2.0×103–4.3×105 7.97 7.0 2.2×104

35 1–4 8.3–49.6 12.8–76.6 1.0×104–3.6×105 8.00 7.1 2.2×104

36 1–4 10.5–60.0 16.3–92.7 1.6×104–5.3×105 7.97 7.0 2.2×104

37 1–11 −20.8 −32.2 −6.3×104 9.87 8.7 2.7×104

38 1–11 −34.7 −53.6 −1.7×105 9.88 8.7 2.7×104

39 1–11 0.9–45.7 1.4–70.5 1.2×102–3.0×105 9.89 8.7 2.7×104

40 1–9 1.6–48.9 2.4–75.5 3.5×102–3.5×105 9.90 8.8 2.7×104

41 1–6 4.2–52.5 6.5–81.1 2.5×103–3.5×105 9.83 8.7 2.7×104

42 1–4 7.6–50.4 11.7–77.9 8.3×103–3.7×105 9.88 8.7 2.7×104

43 1–4 9.8–57.1 15.1–88.2 1.4×104–4.7×105 9.81 8.7 2.7×104

Table 2. Test conditions. Combined oscillatory flow and current. Period of the motion,
T = 9.7 s. Video recording, bed shear stress and free-stream velocity measurements were
synchronized. For tests 11–29, water temperature was 19.5◦C and the kinematic viscosity
was 0.0101 cm2 s−1; for tests 30–36, the water temperature was 18.0◦C and the kinematic
viscosity was 0.0106 cm2 s−1; and for tests 37–43, the water temperature was 17.5◦C and the
kinematic viscosity was 0.0107 cm2 s−1. b = 0.39 m, the width of the tunnel, and h = 0.29m, the
height of the tunnel. No side-view flow visualization test was conducted. One run for each test.

3. Test conditions
3.1. Test conditions for pure oscillatory flow experiments

Table 1 summarizes the test conditions for the pure oscillatory flow experiments. Note
that U0m in the table is the amplitude of the free-stream velocity defined by

U0 = U0m(t) sin(ωt) (2)
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with U0m(t) = α + βt in which α and β are constants; ω is the angular frequency

ω =
2π

T
(3)

and T is the period of the oscillatory motion. The quantity a in the table is the
amplitude of the motion calculated from

a =
U0mT

2π
. (4)

The Reynolds number is defined by

Re =
aU0m

ν
. (5)

3.2. Test conditions for combined oscillatory flow and current experiments

Table 2 summarizes the test conditions for combined oscillatory flow and current
experiments. The quantity V in the table is the cross-sectional mean velocity of the
current component of the combined flow, calculated from

V = Q/(bh) (6)

where the product bh is the cross-sectional area of the measurement section (b is the
width, b = 0.39 m, and h is the height, h = 0.29 m; figure 1). Rec in the table is the
current Reynolds number, defined by

Rec =
4RhV

ν
, (7)

where ν is the kinematic viscosity and Rh is the hydraulic radius:

Rh = (bh)/(2b + 2h). (8)

4. Coherent structures
These observations show that there are essentially two kinds of coherent flow

structures:
(i) Vortex tubes. These are basically two-dimensional vortices close to the bed

extending across the width of the flow in the plan view. These features emerge when
Re is Re � 7 × 104. (No vortex tubes were observed, on the other hand, for Re larger
than 3 × 105 in the present tests.)

(ii) Turbulent spots. These are isolated areas close to the bed in an otherwise laminar
boundary layer (in space and phase) where the flow ‘bursts’ with violent oscillations.
These features emerge when Re > 1.5 × 105. The emergence of the turbulent spots
marks the onset of turbulence as detailed below.

Each flow structure is now considered individually. Note that, in the following
description, the phase ωt = 0◦ corresponds to the zero upcrossing of the free-stream
velocity signal (2) and, therefore, ωt =0◦–180◦ corresponds to one half-cycle and
ωt =180◦–360◦ to the following half-cycle of the motion.

4.1. Vortex tubes

4.1.1. General description

In the plan view, these features appear as a series of transverse bands with
alternating concentration of dye (figure 5; see also supplementary movie 1). (In
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Figure 5. Time evolution of vortex tubes (plan view). Test 5, half-cycle 5. Re = 2.9 × 105. The
flow near the bed (where the vortex tubes are located) is from left to right and, therefore,
the system of vortex tubes is in constant motion from left to right throughout the sequence
(b)–(d ). (Inset) The side view of the vortex tubes.
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connection with the plan-view video frames presented in figure 5 and detailed in the
text, we note that the four circular, black spots seen in figure 5 are actually plastic
dummy probes mounted flush to the bottom of the tunnel. Special care was taken to
ensure that no disturbance was introduced to the flow by these dummy probes.)

Vortex tubes first emerge when the flow Reynolds number is Re � 7 × 104, as
mentioned above. The sequence of video frames shown in figure 5 illustrates the time
development of the vortex tubes in the plan view. The video frames are accompanied
by sketches, which are essentially direct copies of the video frames where the contrast is
grossly enhanced to aid the reader. The Reynolds number of the test is Re = 2.9×105.
The flow direction in the free-stream velocity is from right to left in figure 5(a, b) and
in the opposite direction in figure 5(c, d), while the flow near the bed (where the
vortex tubes are located) is from left to right throughout the sequence (figure 5a–d ).
The vortex tubes in this test first emerged at the phase value of about ωt = 165◦.
They grew stronger (figures 5b and 5c) as they were convected in the near-bed flow
direction (from left to right in the figure). They were strongest at ωt = 186◦ beyond
which they gradually lost coherence and eventually disappeared (‘died’) at ωt = 225◦

(i.e. 45◦ into the following half-cycle). The vertical scale of these structures is much
smaller, O(5 mm) than the spacing between two neighbouring tubes λ, O(20 mm).

These vortex tubes are the result of inflectional-point shear layer instability. For
ωt > 135◦ (i.e. from the instant of the near-bed flow reversal), the laminar oscillatory
flow velocity profile (e.g. Batchelor 1967)

u(y, t)

U0m

= sin(ωt) − exp

(
−3π

4

y

δ

)
sin

(
ωt − 3π

4

y

δ

)
(9)

experiences an inflection point. Here, δ is the boundary-layer thickness defined as
y = δ, where the velocity becomes maximum at the phase value ωt = 90◦ (Sumer,
Jensen & Fredsøe 1987). Note that δ is related to the Stokes length

δ1 =

(
2ν

ω

)1/2

(10)

by

δ =
3π

4
δ1 =

3π

4

(
2ν

ω

)1/2

. (11)

Such shear layer is unstable to small disturbances through the Kelvin–Helmholtz
instability mechanism (Blondeaux & Seminara 1979; Akhavan et al. 1991b;
Blondeaux & Vittori 1994; Costamagna et al. 2003), whereby the vorticity in the
shear layer eventually concentrates in discrete vortices as sketched in the inset in
figure 5.

The velocity induced by the vortices sweep the dye, initially situated uniformly in a
thin layer over the bottom wall, into vortices. Hereby the vortices become visible as
exhibited in figure 5. This figure also reveals that the described instability process is
initially a two-dimensional or quasi two-dimensional process, similar to that observed
in steady shear layers (e.g. Browand 1966; Bernall 1981; Ho & Huerre 1984). However,
in this case, the inflection point (and the shear layer) moves constantly upwards as
the boundary layer develops (as can be readily verified from (9)). The inflection point
is the center of the rolled-up vortices (maximum vorticity); thus, the vortex tubes will
also move away from the bed. Although not clear from the still plan-view images
(e.g. figure 5), this can be seen quite clearly in the plan-view videos when played live,
revealed by the shadows of the structures; see Movie 1.
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Figure 6. Phase values of inception (a) and disappearance (b) of vortex tubes.

In figure 6, we plot (a) the phase values at which the vortex tubes first emerge
(circles) and (b) the phase values at which they disappear (crosses) for the entire set
of data obtained in the present tests (table 1).

Although somewhat limited, the present data (figure 6) indicate that there is a
trend that the phase where the vortex tube first emerges decreases with increasing
Re (circles), while the phase values where the vortex tubes disappear (crosses) show
no Reynolds number dependence. The decrease in ωt with increasing Re may be
explained in terms of the large increase of the slope du/dy at the inflection point with
increasing Re. (This can be readily seen from the laminar solution in (9), inserting
δ/a =(3π/4)(2/Re)1/2, which is obtained from (5) and (11).) The latter means that
the instability occurs at smaller and smaller values of ωt with increasing Re, as
revealed by figure 6. Moreover, the fact that the phase values at which the vortex
tubes disappear is independent of the Reynolds number implies that the lifespan of
vortices increases with Re. This, again, may be attributed to the increase in du/dy at
the inflection point with increasing Re. Clearly, the larger the value of du/dy at the
inflection point, the stronger the vortices, and therefore the longer the lifespan of the
vortices.

Finally, as seen from figure 6, no vortex tubes are observed for Re larger than
3 × 105. This is because, for Reynolds numbers larger than this value, the flow
becomes fully developed turbulent for the phases corresponding to the inception of
vortex tubes, namely ωt = 150◦–160◦ (see Jensen et al. 1989, figure 8; and figure 10
of this paper) and, therefore, the entire concept of the inflectional-point shear layer
instability breaks down, and hence no vortex tubes are generated.

4.1.2. Bed shear stress

Figure 7 shows five video frames from the flow visualization of test 7, half-cycle
3, illustrating the passage of vortex tubes over the hot film. The flow near the bed
(where the vortex tubes are located) is from right to left throughout the sequence
(figure 7b–e). (The reason why the near-bed flow direction is different from the
sequence in figure 5 is that this sequence is taken from the other half-cycle of the
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Figure 7. Vortex tubes (plan view). Test 7, half-cycle 3. Re =3.0 × 105. The flow near the bed
(where the vortex tubes are located) is from right to left and, therefore, the system of vortex
tubes is in constant motion from right to left throughout the sequence (b)–(e).

flow.) The bed shear stress time series recorded by the hot film simultaneously with
the flow visualization is displayed in figure 8. At ωt = 156◦, the visualization shows
no flow structures (figure 7a), neither does the bed shear stress (figure 8, arrow a).
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Figure 8. Trace of bed shear stress. The arrows (a)–(e) refer to the video frames (a)–(e) of
the previous figure. Kinks in the bed shear stress signal are associated with the vortices passing
over the wall shear stress probe and dips with the time periods between two successive vortices.

However, at ωt = 183◦, a dip in the bed shear stress is seen to correspond to the time
instant between two successive vortex tubes (area represented by the absence of dye);
and at ωt = 189◦, a kink in the bed shear stress is associated with the passage of a
vortex tube just over the hot film. So, the bed shear stress is raised momentarily by
the vortices passing over the wall shear stress probe while it is lowered in the time
periods between two successive vortices.

The high-frequency oscillations exhibited in the bed shear stress signal in figure 8
(e.g. arrows c, d and e) may be viewed as ‘turbulence’. However, this turbulence is
limited to the lifetime of the vortex tubes (figure 6), and its magnitude is significantly
smaller than that introduced by turbulent spots and eventually by the boundary-layer
process; c.f. the magnitude of the fluctuations generated by the vortex tubes exhibited
in figure 8, O(1 cm2 s−2) and that generated by turbulent spots shown in figure 15(a–c)
(for the same, or even smaller Reynolds numbers, Re � 3 × 105), O(5–15 cm2 s−2).

It may be argued that the above-mentioned oscillations can be linked to some
kind of secondary instabilities or other disturbances that develop on the top of the
vortex tubes. However, this may not be the case, as these oscillations are related to
the passage of successive vortex tubes over the hot film, as revealed by the present
observation.

4.1.3. Comparison with the results of others

From the present data, it is found that the spacing between adjacent vortices λ
(see the inset in figure 5), the wavelength remains practically constant throughout
the vortices’ lifespan. Furthermore, no correlation is found between the normalized
wavelength λ/δ and the Reynolds number. From the data, the mean value of the
wavelength is found to be

λ

δ
= 6.1 (12)

with a standard deviation of σ/δ = 0.31, in which the mean value and the standard
deviation are calculated from a sample of the size N = 26. As seen, the spreading
around the mean value, σ/λ, is rather small, σ/λ=0.05, and may be attributed to
uncertainties involved in the measurements.

Blondeaux & Vittori (1994) studied transition in oscillatory boundary layers, using a
linear-stability analysis where the results of an earlier stability analysis (Blondeaux &
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Seminara 1979) were also summarized. In Blondeaux & Seminara (1979), it was
shown that

(i) The wavelength of the most unstable two-dimensional disturbance (a two-
dimensional Tollmien–Schlichting wave which is generated by the instability of the
oscillatory boundary layer) is

λ

δ
= 5.33 (13)

(figure 2 of Blondeaux & Seminara 1979), which was later confirmed by the spectral
solution of the Orr–Sommerfeld equation of Akhavan et al. (1991b) and the DNSs
of Navier–Stokes (N-S) equations of Costamagna et al. (2003); and

(ii) The vortex tubes should emerge close to the flow reversal.
The present results ((12) and figure 6a) agree with the above results of the stability

analysis of Blondeaux & Seminara (1979).
As mentioned in the preceding paragraph, Costamagna et al. (2003) performed

DNSs of the N-S equations and investigated the flow by means of flow visualizations
and quantitative analysis of the velocity and vorticity fields. Their flow visualization
clearly reveals the vortex tubes (figures 6, 7 and 9 of Costamagna et al. 2003). The
phases of inception and disappearance of the vortex tubes (implied by their figure 8)
are also consistent with the present findings (figure 6). Furthermore, the development
of perturbations in the transverse direction (figure 9 of Costamagna et al. 2003)
appears to be quite similar to those observed in the present experiments (figures 5
and 7).

Hayashi & Ohashi (1982) observed the presence of spanwise bands alternating
between high and low concentration of dye in an oscillatory boundary-layer flow.
Although termed disturbances in the original publication (and no discussion regarding
their origin), the structures observed by these authors are apparently vortex tubes,
similar to those in the present study. From the sequence of the plan-view photographs,
the wavelength of these features is found to be λ/δ = 5.4, which is in fairly good
agreement with the present result (12). The test conditions for the Hayashi and Ohashi
experiment were: the maximum value of the velocity, U0m = 49.2 cm s−1, the period,
T = 13.0 s, the Reynolds number Re = 3.8 × 105 and the boundary-layer thickness,
δ =0.6 cm. Their Reynolds number (Re = 3.8 × 105) is apparently somewhat larger
than the largest Reynolds number for which the vortex tubes were observed in the
present study. No clear explanation has been found for this discrepancy.

Das & Arakeri (1998) performed unsteady flow experiments in a circular pipe
except in a few experiments where a channel with rectangular cross-section was used.
The flow was not an oscillatory flow; rather it was an unsteady flow with the time
variation of velocity having a trapezoidal shape. They used water as the working fluid
and employed the fluorescent dye technique for an extensive flow visualization study.
Although the flow environment was different from the present one and the flow was
also not a sinusoidally oscillating flow, flow structures similar to the present vortex
tubes were observed by Das and Arakeri’s work for the phase values after the velocity
profiles began to experience an inflection point following the flow reversal near the
wall. From their experiments, Das & Arakeri gave the wavelength normalized by the
average boundary layer thickness δ as

λ

δ
= 3.0 (14)

with standard deviation 0.4 for a range of the boundary-layer-thickness Reynolds
number of 500–2600. (The average boundary-layer thickness is defined as that
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Figure 9. Sequence of video frames illustrating the time development of a turbulent spot.
Test 6, half-cycle 4. Re =4.5 × 105.

averaged over the time between t1 and tp in which t1 is the instant where the
flow begins to decelerate, and tp is that where what Das & Arakeri call a perceptible
wave appears.) Similar to the present findings, no Reynolds number dependence is
observed in the data of Das & Arakeri. Boundary-layer flow in a pipe is governed by
not only the Reynolds number but also the radius-to-boundary-layer-thickness ratio,
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R/δ1 (Lodahl et al. 1998). Although the range of the latter parameter is not mentioned
explicitly in Das & Arakeri (1998) in relation to (14), it is inferred from their table
1 that this parameter is R/δ1 = O(1–5), a range where R/δ1 should play a significant
role (Lodahl et al. 1998). Nevertheless, the wavelength found in the study of Das &
Arakeri is not significantly different from that obtained by the present experiments
(see (12)), considering the difference in the definition of the boundary-layer thickness.

Hino et al. (1983) carried out oscillatory air flow experiments in a rectangular duct
including flow visualization, using the smoke technique. No detailed information is
given regarding the shear-layer instability and resulting vortices in Hino et al. (1983).
Nevertheless, they note that ‘small and weak vortices are occasionally generated owing
to the flow instability at the velocity inflection point’.

Sarpkaya (1993) conducted oscillatory flow experiments over a cigar-shaped body
placed in an oscillating water tunnel, the oscillations being in the direction along
the length of the body. The length-to-diameter ratio of the body was such that
the results converge to those for an oscillatory boundary-layer over a flat plate.
An extensive series of flow visualization was carried out, using the fluorescent-dye
technique and a laser-sheet system. Flow processes were videotaped over a broad
range of the Reynolds number, covering Re from ∼1 × 105 to ∼1.6 × 106. Although
not specifically identified by Sarpkaya as inflection-point-instability-induced vortices,
the vortices exhibited in some of the sequences and still video frames (Sarpkaya
1993; the video sequence in figure 11 and still pictures from video recording given in
figure 12) resemble strikingly those observed in the present study and in the study of
Das & Arakeri (1998). We should also note that the phase of inception, the phase
of disappearance and the Re number for which these vortices were observed are all
consistent with the present findings.

4.2. Turbulent spots

4.2.1. General description: formation and evolution of turbulent spots

Turbulent spots are isolated areas close to the bed, in an otherwise laminar
boundary-layer flow, similar to those in steady boundary layers (first observed by
Emmons 1951). The flow in these isolated areas ‘bursts’ with violent oscillations.
Figure 9 shows a sequence of video frames, illustrating the time development of a
turbulent spot in plan view (see also supplementary movie 2).

The sequence of video frames is taken from the flow visualization obtained in test
6, half-cycle 4, where Re = 4.5 × 105. The flow is from right to left. At the phase
value ωt = 125◦ (figure 9b) the spot, an arrowhead-shaped flow feature, which first
emerged at an earlier phase, is seen to the right of the video frame. It travels to the
left as it grows in size during the course of the half-cycle (figure 9b–e). Its lifetime
comes to an end by the time the flow reverses inside the spot. With this, the spot is
‘destructed’ whereby it turns into an incoherent field of ‘background’ turbulence as the
boundary layer progresses into the next half-period of the motion. (Note that the flow
outside the spot reverses not at the same time but somewhat earlier.) The present
observations show that the flow reversal inside the spot occurs at approximately
ωt =170◦ (on average), a phase value larger than that for the laminar boundary-layer
reversal, ωt = 135◦. The delay in the flow reversal is due to turbulence inside the spot
(the near-bed flow is supplied with momentum-rich fluid continuously from the outer
flow due to turbulence, and this delays the flow reversal inside the turbulent spot),
similar to fully developed turbulent oscillatory boundary-layer flows (Hino et al. 1983;
Fredsøe 1984; Spalart & Baldwin 1987; Jensen et al. 1989). Supplementary movie 3
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Figure 10. Phase of inception of turbulent spots as function of Re. Solid curves show
borderlines between laminar, transitional and turbulent regions (Jensen et al. 1989, figure 8,
obtained through the bed shear stress measurements). Dashed curve shows data corresponding
to the phase values at which the near-bed flow reverses, including Hino et al. (1983, triangle),
Jensen et al. (1989, empty circles), Spalart & Baldwin (1987, crosses) and Fredsøe (1984, dotted
line). Near-bed flow reversal occurs at ωt = 135◦ in the laminar regime, and approximately at
170◦ (as Re → 107) in the turbulent regime.

illustrates the time development of turbulent spot in side view (see also Carstensen
2006). We note that the vertical extent of the turbulent spot in the test was O(10 mm).

Spots videotaped in the plan-view flow visualization are grouped in two categories:
(a) spots that are generated (and therefore first emerge) inside the viewing area
(figure 2); and (b) those that are not generated inside this area, but travel across
it. Data regarding the phase of emergence of the first-category spots are plotted in
figure 10 (filled circles). In the same figure, two other sets of data also are plotted:

(i) Data corresponding to the borderlines between three different regimes (laminar,
transitional and turbulent) of boundary-layer flows, the thick solid curves, taken from
Jensen et al. (1989, figure 8).

(ii) Data corresponding to the phase values at which the near-bed flow reverses
(the dashed curve). This curve represents the experimental data of Jensen et al. (1989,
empty circles) and Hino et al. (1983, triangle); a set of numerical results of Spalart &
Baldwin’s (1987) direct N-S simulations for transitional boundary layers (crosses);
Fredsøe’s (1984) theoretical solution for fully developed turbulent boundary layers
(dotted line); and the classic laminar solution ωt =135◦. (Note that Sarpkaya 1993
made an extensive comparison of his own experimental data with the near-bed-flow-
reversal data plotted in figure 10, and found that all data coincide.)

First of all, no spots are observed for the Reynolds number smaller than
(Re)cr = 1.5 × 105. For Re smaller than this critical value, the flow remains laminar
(except in the cases where the previously mentioned vortex tubes come into existence
as a result of the hydrodynamic instability caused by the inflection point in the
velocity profile). The critical value of the Reynolds number, (Re)cr = 1.5 × 105,
appears to be in fairly good agreement with the experimental data reported in the
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literature for laminar-to-turbulent transition (see, for example, Sleath 1984; Jensen
et al. 1989; Lodahl et al. 1998), and also in very good agreement with the value
(Re)cr = 1.58 × 105, obtained by a stability analysis (see Sleath 1984) as well as the
asymptotic result (Re)cr = 1.5 × 105 of Tromans (1978) as R/δ1 → ∞ (the plane
boundary case) obtained from a stability analysis carried out for oscillatory flows
in a circular pipe (R is the radius and δ1 is the Stokes length). The results also
agree well with the DNS simulations of Akhavan et al. (1991b), Vittori & Verzicco
(1998) and Costamagna et al. (2003), as detailed in § 4.2.3. At this juncture, we
recognize the following comment made by one of the referees of this paper: ‘When
comparing experimental values for transitional and critical Reynolds number obtained
through theoretical stability analysis (i.e. when linear disturbances start to grow), any
correspondence in the values is usually just a coincidence’, although the preceding
comparison indicates that the correspondence between the experimentally obtained
values and the theoretically obtained ones appears to be fairly good.

Secondly, figure 10 shows that, for a given value of Re, spots first emerge at a
phase value in a broad interval of ωt . For example, for 1.5 × 105 <Re < 2.5 × 105,
spots would emerge at any phase between ωt = 103◦ and 153◦.

Thirdly, it is seen that the present data points, not surprisingly, fall into the
transitional-regime area of Jensen et al. (1989), the area between the two thick, solid
curves in the diagram. It is interesting to note that the flow-regime data of Jensen
et al. (1989) were obtained through the flow-resistance information (attained by the
bed shear stress measurements).

Fourthly, figure 10 further shows that the turbulent spots emerge earlier and earlier
as the Reynolds number is increased. (For example, they emerge as early as at
ωt =56◦ when Re = 8.5 × 105.) This is in agreement with the result of Jensen et al.
(1989) that turbulence (characterized by the r.m.s. value of the fluctuations in the
bed shear stress) first occurs just prior to the bed shear stress reversal (on average),
and then spreads towards smaller and smaller values of phase with increasing Re.
Jensen et al. (1989) note that turbulence first occurs just prior to the bed shear
stress reversal because the adverse pressure gradient becomes relatively large and the
velocity of near-bed fluid particles becomes relatively small at this phase value so
that a very favourable environment forms for the initiation of turbulence. Note that
the simulations performed by Blondeaux & Vittori (1994) show that, although for a
somewhat smaller value of the Reynolds number (Re =0.8 × 105), the velocity field is
characterized by large amplitude perturbations similar to those that would be induced
by turbulent spots observed in this study. Of particular interest is Blondeaux &
Vittori’s (1994) simulations that show that transition to turbulence occurs at phase
values similar to those corresponding to the inception of turbulent spots of this
study.

The way in which the spots develop can be described with reference to figure 11
(test 2, half-cycle 10, Re = 1.5 × 105). The spot first emerges in the form of two finite-
length streaks (streaky white areas in figure 11a). Subsequently, the streaks develop
twisting and turning motions (figure 11b, c), which are followed by the appearance
of additional longitudinal streaks (figure 11c, d). The new streaks themselves develop
twisting and turning motions and break into smaller structures, and the process
continues, presumably resulting in the arrowhead-shaped turbulent spot similar to
that described in conjunction with figure 9. This observation is analogous to that
made for steady boundary layers (e.g. Gad-el-Hak, Blackwelder & Riley 1981; Perry,
Lim & Teh 1981; Chambers & Thomas 1983; Browand & Plocher 1985; Seifert &
Wygnanski 1995; Matsubara & Alfredsson 2001).
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Figure 11. Inception of turbulent spot. Re = 1.5 × 105. Flow direction from right to left.
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Figure 12. Turbulent spots and vortex tubes occur concurrently. Test 7, half-cycle 3.
Re = 3.0 × 105. Free-stream flow direction from left to right.

Turbulent spots can occur concurrently in space (see Carstensen 2006). As the
flow develops during the half-cycle, turbulent spots grow in size (as described in
conjunction with figure 9) and number, and eventually they merge to form the fully
developed turbulent boundary layer (area marked turbulent in figure 10).

Turbulent spots can also occur simultaneously with vortex tubes; figure 12 (test 7,
half-cycle 3, Re = 3 × 105). In figure 12(a), it is seen that there is a turbulent spot
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developing, but no vortex tubes have emerged yet at this phase, ωt = 143◦. However,
by the time ωt = 178◦, vortex tubes have emerged and begin to develop (figure 12b).
No vortex tubes are present inside the turbulent spot because the flow here is no
longer in the laminar regime. Therefore, no quasi-two-dimensional inflection point
instabilities develop inside the spot, and hence no vortex tubes emerge. In addition,
the near-bed flow reversal outside the spot has already taken place at ωt = 135◦

while, inside the spot, this is delayed to ωt ≈ 170◦ (see supplementary movie 4). The
range of the Reynolds number in which vortex tubes and turbulent spots can exist
concurrently is 1.5 × 105 < Re < 3 × 105. The lower bound of the latter interval is the
critical Re for the inception of turbulent spots (figure 10), and the upper bound is
the largest Re beyond which no vortex tubes are observed (figure 6).

4.2.2. Bed shear stress under turbulent spots

Figure 13 displays a video sequence (test 6, half-cycle 4 with Re = 4.5 × 105)
illustrating two successive turbulent spots, which both pass over the hot-film probe (see
supplementary movie 2). The first spot passes over the hot-film probe during the phase
interval 91.5◦ <ωt < 96◦ (figure 13a,b) and the second spot during the phase interval
140◦ <ωt < 148◦ (figure 13c,d ). The bed shear stress time series for this half-cycle (and
thus the response of the bed shear stress to the passages of the two successive turbulent
spots over the hot film) is shown in figure 14. The figure shows that the first spike in
the bed shear stress (A) coincides with the passage of the first turbulent spot (spot A
in figure 13a,b), and the second spike (B) coincides with the passage of the second tur-
bulent spot (spot B in figure 13c,d ). Similar spikes in near-bed velocity and wall shear
stress signals have been observed by previous researchers in conjunction with laminar-
to-turbulent transition in oscillatory boundary layers; Hino et al. (1976) in near-wall
velocity signals and Jensen et al. (1989) and Lodahl et al. (1998) in wall shear stress
signals. However, this study, for the first time, relates the previously observed spikes
in the wall shear stress signal (and in the near-bed velocity signal) to turbulent spots.

There is a considerable difference in the shape of the two spikes in figure 14, spikes
A and B. The bed shear stress data collected in the experiments show that there is a
large variation in shape as well as in phase of the spikes. Figure 15 shows additional
time-series of the bed shear stress. (We note that no turbulent spots were captured
occurring just over the hot film in the range 1.5 × 105 <Re < 1.9 × 105, although they
occurred elsewhere as revealed by the flow visualization.) The large variation in the
shape and phase of occurrence of the spikes is linked to factors such as the size and
phase of spots; whether or not they are merged; and also equally important, their
position relative to the hot-film probe.

The turbulence associated with the turbulent spot brings momentum-rich fluid from
the outer flow to the near-bed area. Therefore, the higher the momentum of the outer-
flow, the larger the magnitude of the spike in the bed shear stress. The momentum of
the outer flow is highest at ωt = 90◦, and therefore the spikes should be largest around
this phase value (e.g. figure 14, and for the single spikes in figure 15c–f ). Figures 14
and 15 show that the magnitude of a spike in the bed shear stress signal can be as
much as a factor of 3 or 4 larger (sometimes even larger) than the maximum bed
shear stress caused by the maximum free-stream flow velocity. Clearly, this has large
implications for sediment transport both in the laboratory and in the field.

As regards the effect of the size of the spot, the larger the spot, the longer the time
during which it travels over the hot-film probe, and therefore large spots generate
multiple spikes over a broad range of the phases. However, the spatial position of
the turbulent spot relative to the probe is also important, as already pointed out. If



Coherent structures in wave boundary layers. Part 1. Oscillatory motion 191

A

A

5 cm

Hot-film probe

(a)

(c)

(b)

ωt = 91.5°

ωt = 96°

(d)

ωt =140°

ωt =148°

B

B

Figure 13. Video sequence (plan view) illustrating two successive turbulent spots which both
pass over the hot-film probe; see also supplementary movie 2. Test 6, half-cycle 4. Re = 4.5×105.
Free-stream flow direction from right to left.

only a small portion of the spot is passing over the probe, this will appear in the bed
shear stress trace as a relatively narrow spike or vice versa. Thus, the width of the
spike is not a direct measure of the size of the turbulent spot.

Figure 16 shows further traces of bed shear stress for four more Reynolds numbers,
from Re =1.2×106 to 5.0×106. (Note that the vertical scales in figure 16 are a factor
of 2 larger than those in figure 15.) The Reynolds numbers in figure 16 were too
high to track turbulent spots as identifiable, individual, coherent flow structures in
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Figure 14. Traces of bed shear stress and free-stream velocity corresponding to the passage
of the two turbulent spots over the hot-film probe illustrated in figure 13. Re = 4.5 × 105.

flow visualization (the flow, for the most part, being in the fully developed turbulent
regime where turbulent spots are merged, the area marked ‘turbulent’ in figure 10).
Nevertheless, the bed shear stress was measured to obtain a complete picture of the
process. Figure 16 clearly shows that turbulence is generated earlier and earlier in
phase as Re is increased. With Re =5.0 × 106, turbulence is generated over the entire
half-period, in agreement with our previous research (Jensen et al. 1989). Note that
this conclusion is also in good agreement with the results of the DNS calculations of
Vittori & Verzicco (1998) and Costamagna et al. (2003), namely that the turbulent
velocity fluctuations increase in strength, and the decelerating part of the cycle during
which they are observed becomes longer with increasing Re.

4.2.3. Comparison with the results of others and discussion

Hayashi & Ohashi (1982) reported what they called flow disturbances which ‘. . .
appear on the bed and are deformed to U-shaped loops. . . ’ (see their figure 16c–
f ). They did not combine the visual and quantitative techniques that would have
otherwise enabled them to relate the observed flow disturbances to flow quantities.
The present authors believe that the flow disturbances in Hayashi & Ohashi’s
(1982) experiments were turbulent spots. No direct comparison could be made with
Hayashi & Ohashi’s results as they did not specifically give data with regard to the
critical Reynolds number, the phase where the flow disturbances first appear and the
way in which they develop. However, the following aspects are worth mentioning:
Hayashi & Ohashi’s still photographs illustrate that (a) their flow disturbances can
exist concurrently (figure 16 of Hayashi & Ohashi 1982), and (b) they can also occur
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Figure 15. Traces of bed shear stress for different Re numbers in the transitional regime.

concurrently with vortex tubes (figures 16 and 17 of the same paper), in agreement
with the present study.

As mentioned previously, Sarpkaya (1993) conducted an extensive series of flow
visualization experiments. The objective was to examine the inception and response
of low-speed streaks and other turbulence structures to periodic acceleration and
deceleration of oscillatory flow to elucidate the mechanisms of transition to turbulence.
On the basis of these experiments, Sarpkaya (1993) gave a very detailed description
of the time development of longitudinal streaks, starting from their inception to
their evolution and eventually to their destruction during the course of the flow.
Although he did not specifically describe the observed streaks as part of a turbulent
spot, there are striking similarities between the structures observed by Sarpkaya
(1993; see e.g. the sequence in figure 7 of his paper) and those observed in this
study. One difference, however, is that Sarpkaya (1993) reports that ‘. . . a series
of events regarding longitudinal streaks was observed when Re was increased to
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Figure 16. Traces of bed shear stress for large Re numbers.

Re ≈ 9 × 104–1.1 × 105 . . . ’, corresponding to the critical Reynolds number where
turbulent spots first emerge in the context of the present study. (The presence of
longitudinal streaks was actually observed even earlier in the study of Sarpkaya,
when Re was set at Re ≈ 8 × 104; however, Sarpkaya notes that ‘. . . these streaks
remained perfectly straight, smooth, and moved small amounts toward and away
from each other with no visible interaction, and subsequently disappeared during
the acceleration period . . .’.) The ‘critical’ Reynolds number at which the streaks first
develop into what we interpret a turbulent spot in Sarpkaya’s study, Re ≈ 9 × 104–
1.1×105, is somewhat smaller than the critical Reynolds number of the present study,
Re = 1.5 × 105. The exact value of the critical Reynolds number may vary from study
to study, however, depending on the disturbance level in different facilities. Sarpkaya
(1993, p. 108) also remarks on this. As an example, our previous research (Fredsøe
et al. 2003) clearly demonstrated that the transition to turbulence occurred earlier,
at a much lower Reynolds number (like Re ≈ (5–6) × 104) when a field of external
turbulence was introduced into the flow.

Vittori & Verzicco’s (1998) DNS simulation results showed that the transition
from what they call the disturbed laminar regime to the intermittent turbulent
regime takes place at (Re)cr = 1.5 × 105, which is in very good agreement with
the present experiments. This result was later confirmed by Costamagna et al.’s
(2003) DNS simulations, wherein they investigated coherent structures, using the data
obtained from simulations. For the intermittently turbulent-regime flows, their flow
visualization in the numerical tests clearly showed the presence of low-speed streaks
(Costamagne et al. 2003; figures 12 and 13, where Re = 3.2 × 105), which resemble
quite well the streaks inside the turbulent spots observed in the present experiments
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(e.g. figure 9). We also note that their flow visualization also illustrates the formation
and time development of low-speed wall streaks (the sequence of flow visualization
frames in figures 15 and 16 of Costamagna et al. 2003). A whole turbulent spot
was not simulated, however, by Costamagna et al. simply because the goal of the
study was to isolate the basic flow unit and to study its ‘morphology’ and dynamics.
Therefore, they aimed to keep the size of the computational box as small as possible
to reproduce the process of turbulence generation (following Jimenez & Moin 1991).
(In this connection, we note the following. Costamagna et al. report that a run has
been made doubling the size of the computational box in both the streamwise and
spanwise directions with dimensions 1290 and 640 in wall units, respectively. It turns
out that even this size is small compared with the size of the turbulent spots shown
in the sequence of video frames in figure 9.)

Akhavan et al. (1991b) carried out a hydrodynamic instability analysis for an
oscillatory flow between two parallel plates. They investigated the flow instability
for a variety of disturbances, tracking the time evolution of the disturbance by the
DNS of the Navier–Stokes equations. Three kinds of disturbances were investigated:
(a) infinitesimal disturbances, (b) finite-amplitude two-dimensional disturbances and
(c) infinitesimal three-dimensional disturbances superimposed on finite-amplitude
two-dimensional ones. The first kind of disturbances, although associated with a
least-stable wavenumber, were shown to experience a monotonic decay with time,
and therefore cannot be responsible for the transition. (We shall return to this
point shortly.) Similarly, the second kind of disturbances also did not result in
instability. However, Akhavan et al.’s simulations showed that the two-dimensional
finite-amplitude disturbances are susceptible to growth in the presence of three-
dimensional disturbances, and hence transition to turbulence could be explained by a
so-called secondary instability mechanism, i.e. a mechanism in which two-dimensional
finite-amplitude waves are unstable to three-dimensional infinitesimal disturbances.
Such an instability mechanism has been investigated by Orszag & Patera (1983) for
a wide variety of wall-bounded parallel shear flows, including plane Poiseuille flow,
plane Couette flow, flat-plate boundary layers and pipe Poiseuille flow. With this kind
of mechanism, Akhavan et al. (1991b) were able to predict well the critical value
of the Reynolds number, (Reδ)cr ∼ 500 (or alternatively (Re)cr ∼ 1.25 × 105), and the
statistics of the resulting turbulent flow. Of particular interest is the resemblance of a
predicted second peak in the phase-resolved turbulence energy during the half-cycle
of the motion (figure 16 of Akhavan et al. 1991b) and that of the present bed shear
stress measurements for the transitional Reynolds numbers (figures 14 and 15c–e).

At this juncture, it is interesting to discuss the role of the observed vortex tubes in the
initiation of turbulence. Clearly, the observation of vortex tubes is not new, and this
kind of instability is well understood. However, this study has shown experimentally
for the first time that the inception of turbulence is not linked to the instability that
generates vortex tubes. This is on the following grounds: (a) The vortex tubes have
finite lifespans, as indicated in § 4.1.1, and therefore cannot be sustained; (b) The
present bed shear stress measurements show that, for the same Reynolds number,
the high-frequency oscillations in the bed shear stress signal generated by these two-
dimensional, ‘regular’ flow structures are one order of magnitude smaller than the
turbulence generated by turbulent spots (§ 4.1.2); and (c) The present experiments offer
no evidence towards any linkage between the generation of turbulent spots and the
vortex tubes. In this context, we note that the spectral solution of the Orr–Sommerfeld
equation of Akhavan et al. (1991b) (mentioned in the preceding paragraphs) indicated
a least stable wave with λ/δ = 5.33 (corresponding to the inflectional point instability,
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the mechanism behind the present vortex tubes, with an estimate of the critical
Reynolds number of (Reδ)cr ∼ 85). Akhavan et al.’s simulations of the time evolution
of infinitesimal disturbances with the aforementioned least-stable wavelength showed
that the disturbances, after an initial growth, experienced a monotonic decay, and
therefore could not be sustained, and cannot explain the transition to turbulence in
oscillatory boundary layers, in agreement with the present observations.

As regards the turbulent spots, the present observations have revealed for the first
time that the inception of turbulence is associated with the generation of turbulent
spots, an important feature not disclosed for oscillatory boundary-layer flows by
the previously discussed experimental and theoretical investigations. The present
experimental setup enabled us to visualize the whole spot, from its generation to its
destruction throughout its evolution in phase space. It also enabled us to visualize
the occurrence of more than one turbulent spots concurrently in physical space, as
well as to visualize the simultaneous occurrence of turbulence spots and vortex tubes.
Furthermore, the present observations revealed that the critical Reynolds number for
the appearance of turbulence spots coincides with that found for the onset of three-
dimensional turbulence observed in the experimental and theoretical studies. Also, the
synchronized bed shear stress measurements and the flow visualization revealed the
‘signature’ of the individual spots on the bed shear stress signal as spikes in the deceler-
ating phase of the motion, therefore settling the long-debated issue regarding the origin
of the observed spikes. We believe that all this information is new and sheds further
light onto the process of laminar-to-turbulent transition in oscillatory boundary layers.

Finally, we discuss a remark made by one of the referees, namely ‘From the
studies of, for example, Vittori & Verzicco (1998) and Costamagna et al. (2003), the
role of extremely small wall imperfections have a large influence on the transition
process. One is therefore left wondering about the role of the hot-film sensor and
the dummy probes apparent on the flow visualization video frames. Could it be
that the spots appear at not-so-random locations because of the presence of these
probes.’ As emphasized earlier, both the hot-film sensor and the dummy probes were
mounted flush to the bottom of the tunnel and special care was taken to ensure that
absolutely no disturbance was introduced to the flow by these probes. Nevertheless,
as a further check, the video frames were checked carefully if there was any evidence
of the initiation of the turbulent spots on or near these probes. No such evidence
was found (see also the video frames presented in figures 9 and 11–13). Additionally,
a quantitative analysis has been carried out to see if the spanwise position of the
turbulent spots is correlated with the locations of these probes. Figure 17 presents the
frequency histograms of the spanwise position of the turbulent spots. The data are
grouped according to the Re number. The locations of the probes are also marked
in the figure. This figure shows that there is no correlation between the spanwise
position of the turbulent spots and the locations of the probes, and this is irrespective
of Re, revealing that the turbulent spots appeared at random locations.

5. Coherent structures in combined oscillatory flow and current
5.1. Vortex tubes

The inflection point instability (and therefore the inception of vortex tubes) is governed
by the Reynolds number, Re, in the case of pure oscillatory flow. In the case of
combined oscillatory flow and current, there is one additional parameter, Rec, the
Reynolds number corresponding to the current component of the combined flow; see
(7) and (8). This latter Reynolds number reduces to the usual definition Rec = (V D)/ν
in the case of a circular pipe where Rh = D/4 (D, the pipe diameter).
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Figure 17. Frequency histograms of the spanwise position of the turbulent spots. Sample
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There is a third parameter, namely Rh/δ1, the quantity Rh is the hydraulic radius
defined in (8), and δ1 is the Stokes length given in (10), as pointed out in our
previous study (Lodahl et al. 1998); however, this parameter loses its significance
for large Rh/δ1 (Lodahl et al. 1998). This parameter in the present experiments was
Rh/δ1 = 8.3 cm/0.17 cm= 47. Although not in the context of the inception of vortex
tubes, the instability data (experimental and theoretical) regarding the transition to
turbulence collected by Lodahl et al. (1998, figure 3), including Troman’s (1978)
theoretical and experimental data and Lodahl et al.’s own experimental data, for
oscillatory flow in a circular pipe, suggest that results converge when Rh/δ1 > 5.

Tuzi & Blondeaux’s (2008) recent numerical simulations confirm the preceding finding
where the latter authors recovered the plane-wall case when Rh/δ1 > 4.5.

Another important non-dimensional parameter is the ratio of the current velocity to
the oscillatory flow velocity, V/U0m , in which V is the cross-sectional average velocity
corresponding to the current component of the combined flow; (6). This quantity can
be worked out in terms of the other three non-dimensional parameters Re, Rec and
Rh/δ1 as follows:

V

U0m

=
1

4
√

2(Rh/δ1)

Rec

Re1/2
. (15)

Any set of three independent non-dimensional parameters can be selected among Re,
Rec, Rh/δ1 and V/U0m , to describe the flow in the case of the combined oscillatory
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flow and current. We choose Re, Rec and Rh/δ1, following Lodahl et al. (1998).
Nevertheless, similar to our previous work (Lodahl et al. 1998), the lines representing
the values of V/U0m , calculated from (15), are indicated in figures 18 and 19, to
emphasize the magnitude of the current relative to the oscillatory flow.

Figure 18 displays the vortex tube data. All the data points associated with vortex
tubes (filled circles) correspond to the half-cycle in which the oscillatory flow and
the current are in the same direction. This is with the exception of two instances
where vortex tubes were observed for the half-cycle in which the oscillatory flow and
the current were in the opposite direction. This may be attributed to the fact that
the slope of the velocity profile at the inflection point, du/dy, is not large enough
in this half-cycle to cause instability, i.e. to generate vortex tubes as many as in the
half-cycle where the oscillatory flow and the current are in the same direction. To the
authors’ knowledge, no hydrodynamic instability theory is yet available, investigating
the instability caused by the inflection point in the case of combined oscillatory flow
and current, to shed light onto the observed difference in the instability between the
two half-cycles.

Now, the dashed line in figure 18 divides the (Re, Rec) plane into two parts: the
area where vortex tubes are observed and that where no vortex tubes are observed.
Firstly, it is seen from the figure that vortex tubes are not generated for the current
Reynolds number above Rec = 2.2 × 104. This is because, for such large Reynolds
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numbers, the flow is in the turbulent regime, as will be seen later, and therefore no
inflectional-point shear layer instability will be generated, and hence there will be no
inception of any vortex tubes. Secondly, the Reynolds number range where vortex
tubes are observed in the case of the pure oscillatory flow, 7 × 104 <Re < 3 × 105, is
apparently uninfluenced by the presence of current. This is simply because the flow
in the ‘vortex tubes’ area is in the wave-dominated regime (V/Um <O(0.2–0.3)), as
seen from figure 18, and hence an influence of current on the vortex tube generation
is, in fact, unexpected.

The phase data (similar to figure 6) for the combined oscillatory flow and current
tests, not shown here for reasons of space, indicated that all the data fall into scatter
band of the pure oscillatory flow data displayed in figure 6. This is not unexpected
because the vortex tubes appear to exist only in the wave-dominated flow regime and,
therefore, the phase of their emergence and disappearance should be uninfluenced by
the presence of the current in this regime. (The combined flow data can be seen in
Carstensen 2006.)

Finally, similar to the case of the pure oscillatory flow, it is observed that the spacing
between adjacent vortices, the wavelength, remains practically constant throughout
their lifespan. Moreover, no correlation is found between the normalized wavelength
λ/δ and the Reynolds numbers Re and Rec in which δ is the boundary-layer thickness
corresponding to the oscillatory component of the combined flow. From the data, the
mean value of the wavelength is found to be

λ

δ
= 5.9 (16)
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with σ/δ = 0.37, where σ is the standard deviation calculated from the sample size
N = 26. Again, this is also not unexpected because the vortex tubes appear to exist
only in the wave-dominated flow regime.

5.2. Turbulent spots

Turbulent spots in an otherwise laminar boundary layer, as described for the case
of pure oscillatory flow, were also identified in the case of combined oscillatory
flow and current. Figure 19 displays the turbulent spot data (filled circles) plotted
on the (Re, Rec) plane where the velocity ratio, V/U0m , contour lines also are
plotted. The open-circles in the figure indicate the laminar regime combined flow,
while the crosses indicate the combined flow with current-generated turbulence. The
solid curve separates two areas on the (Re, Rec) plane: laminar and turbulent.
The difference between the turbulent spots and the current-generated turbulence is
referred to in figure 20. This sequence indicates the following: (a) For the current
alone case, the streaky pattern of the near-wall turbulent boundary-layer flow reported
by many researchers, such as Kline et al. (1967) and Grass (1971) (see Cantwell 1981
for a review), is readily visible in the entire visualized area, also revealed by the
present bed shear stress measurements. (b) As V/U0m is decreased (small oscillatory
component superimposed on the current), laminar-like patches start to appear in
the otherwise turbulent boundary layer; and with further decrease of V/U0m (larger
oscillatory component superimposed on the current), the part of the half-period of the
combined flow where there is a favourable pressure gradient is completely laminarized,
while turbulent spots in an otherwise laminar boundary layer, as described for the
pure oscillatory flow, form late in the part of the half-period where there is an
adverse pressure gradient. (c) For small values of V/U0m , such as V/U0m = O(0.1),
the turbulent spots and the spike in the bed shear stress resemble those found for the
case of the pure oscillatory flow (figure 14).

Now returning to figure 19, the following observations are made. Firstly, the data
in figure 19 indicate that (a) the critical value of the Reynolds number, Rec, will
approach (Rec)cr ≈ 2 × 103 (the value known from steady flow research; Schlichting
1979, p. 451), as Re → 0 (the current-alone case); and (b) the critical value of Re
approaches (Re)cr = 1.5 × 105 (§ 4.2.1), as Rec → 0 (the oscillatory-flow-alone case).

Secondly, the transition to turbulence is delayed by superimposing an oscillatory
flow on the current; for example, for Re =8 × 104, the transition to turbulence is
delayed up to (Rec)cr ≈ 2 × 104, a value an order of magnitude larger than the critical
value for the current-alone case, (Rec)cr ≈ 2 × 103.

Thirdly, the figure indicates that a turbulent current flow can be laminarized by
introducing an oscillatory flow. It shows that the oscillatory flow Reynolds number
range, Re, where the flow is laminarized varies with the current Reynolds number, Rec.
(This process, termed as re-laminarization, has been recognized by earlier researchers,
such as Gilbrech & Combs 1963, Sarpkaya 1966, Ramaprian & Tu 1980 and Lodahl
et al. 1998.)

Fourthly, it seems that turbulent spots may emerge at Re numbers smaller than
1.5 × 105, the critical value for the pure oscillatory flow for transition to turbulence;
turbulent spots are observed at Re numbers as small as 3.5 × 104. (The latter occurs
at the current Reynolds numbers Rec = 2–3×104.) The fact that transition may occur
at much lower Reynolds numbers with current may be linked to a high free-stream
turbulence level in this case, in agreement with our previous research (Fredsøe et al.
2003) on the influence of external field of turbulence on transition.



Coherent structures in wave boundary layers. Part 1. Oscillatory motion 201

5 cm

(a)

(b)

(d)

(c)

Rec = 2.7 × 104

V/U0m = 0.2

V/U0m = 0.5

V/U0m = 1.2

V/U0m = ∞

Current
alone

Half-period = N/A

Half-period = 3

Half-period = 5

Re = 0

Re = 7.1 × 103

Re = 3.9 × 104

Half-period = 11

Re = 2.8 × 105

( )

Figure 20. Video frames illustrating the near-bed flow in the case of current alone (a) and
in the case of combined flow with an increasing oscillatory flow velocity (b–d ). Note the
streamwise vortices visible with the elongated white areas in (a) and the arrowhead-shaped
turbulent spots in (c) and (d ).



202 S. Carstensen, B. M. Sumer and J. Fredsøe

The above observations are in complete agreement with our previous study (Lodahl
et al. 1998), in which the wall shear stress in combined oscillatory flow and current was
measured in three kinds of circular pipes with diameters of 19 cm, 9 cm and 1.1 cm.
Lodahl et al. identified the flow regime, laminar or turbulent, from the time series
of the wall shear stress, and using this information, constructed the neutral curve on
the (Re, Rec) plane. The neutral curve obtained from the present flow visualization
observations (figure 19) is in good, qualitative agreement with those given in Lodahl
et al. (1998). No direct comparison is made because of the differences in the flow
environments of the two studies, the rectangular-section tunnel in the present study
and the circular pipes in Lodahl et al.’s study.

6. Conclusions
(a) These observations show that two coherent flow structures exist in an oscillatory

boundary layer for the transitional flow regimes: vortex tubes and turbulent spots.
(b) The vortex tubes are essentially two-dimensional vortices close to the bed

extending across the width of the boundary-layer flow. These features emerge when
the Reynolds number is in the range of 7 × 104 < Re < 3 × 105.

(c) The imprint of these vortices in the bed shear stress is a series of small,
insignificant kinks and dips.

(d) The turbulent spots are isolated areas close to the bed in an otherwise laminar
boundary layer where the flow ‘bursts’ with violent oscillations. These features emerge
when (Re)cr = 1.5 × 105. The emergence of the turbulent spots marks the onset of
turbulence.

(e) Turbulent spots cause single or multiple spikes in the bed shear stress signal.
The magnitude of these spikes can be as much as a factor of 3 or 4 larger (sometimes
even larger) than the maximum bed shear stress associated with the maximum free-
stream flow velocity. This has a significant implication for sediment transport, both
in the laboratory and in the field.

(f) Similar coherent flow structures also exist in the case of the combined oscillatory
flow and current.

(g) The Re range in which the vortex tubes emerge in the combined flow case is
uninfluenced by the presence of the current. On the other hand, no vortex tubes are
observed for the current Reynolds number, Rec, larger than 2.2 × 104.

(h) Turbulent spots in the combined flow case are observed for Re numbers as
small as Re = 3.5 × 104.

This study has been partially funded by (i) the Danish Research Council
for Technology and Production Sciences (FTP) under the research programme
Exploitation and Protection of Coastal Zones (EPCOAST), and (ii) the Danish
Council for Strategic Research through the research program ‘Seabed and Wind
Farm Interaction’. Comments of Professor Paolo Blondeaux and other two anonymous
referees are greatly appreciated.

Appendix. Flow resistance and phase
Figure 21 presents the flow resistance and phase data for the smooth-bed tests where

the data of Jensen et al. (1989) also are plotted. No other data are plotted to keep the
figure relatively simple. However, Jensen et al. (1989, figure 11) (and later Sarpkaya
1993, figures 4–6, including his own experimental data) made an extensive comparison
of their flow resistance and phase data with the existing experimental and theoretical
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work including Spalart & Baldwin’s (1987) direct Navier–Stokes simulation, Fredsøe’s
(1984) theoretical solution, Kamphuis’ (1975), Hino et al.’s (1983) and Sleath’s (1987)
experiments, and demonstrated that all the data are consistent with the exception
that Spalart & Baldwin’s numerical data and Kamphuis’ experimental data deviate
somewhat from the other data in the transitional Re-number range (Jensen et al.
1989, figure 11). In figure 21, fw is the wave friction coefficient

fw =
2τ0m

ρU 2
0m

, (A 1)

and φ is the phase lead of the bed shear stress over the free-stream velocity

τ0 = τ0m f (ωt + φ). (A 2)

Figure 21 shows that the present data (where the amplitude of the motion is
increased from rest steadily according to figure 3a) are in good agreement with those
of Jensen et al. (1989), where the flow is driven with steady oscillations. However, some
discrepancy is to be expected between the two cases for the turbulence quantities, u′2,

v′2, . . . and τ ′2
0 , as the ‘background’ turbulence left from the previous cycles will not

be the same in the two cases. Nevertheless, the organized structures (vortex tubes
and turbulent spots), the focus of the present study, will be affected very little if not
at all by the latter effect as these structures are associated with laminar-to-turbulent
transition rather than fully developed turbulent flows.

Supplementary movies available at journals.cambridge.org/flm.
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